

Numerical Simulation of Lean Premixed Turbulent Hydrogen/Hydrocarbon Flames at Elevated Pressures

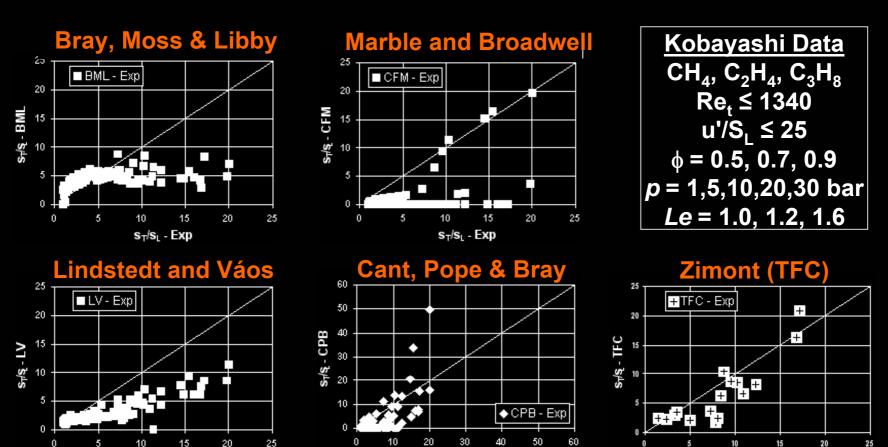
Siva P. R. Muppala and M.V. Papalexandris

Department of Mechanical Engineering Catholic University of Louvain, Belgium

&

B. Manickam, N. K. Aluri, F. Dinkelacker
Institute for Thermodynamics and Combustion
University of Siegen, Germany

Outline

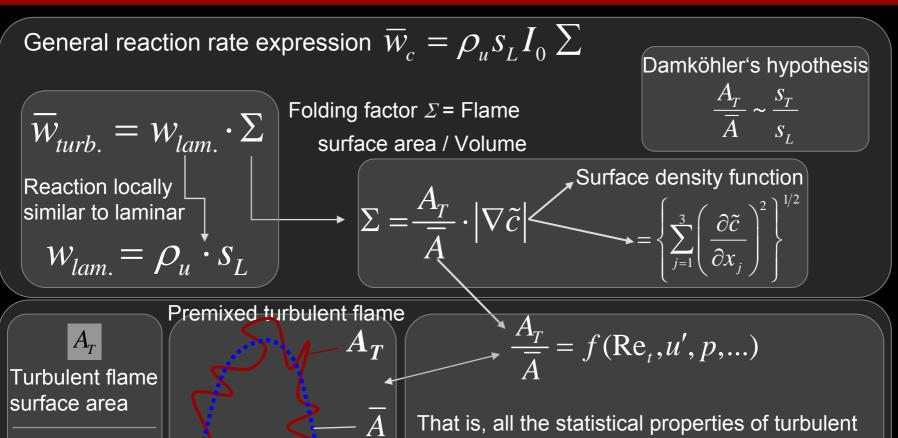

- 井 Kobayashi data
- # A relatively novel reaction model
- Model predictions ,blended' fuels Two flame data
- # A submodel for the critical chemical time scale

(H₂-doped) Hydrocarbon Lean Flames

- # Hydrocarbon Combustion at Lean flammability limit yields low NOx
- Low operating temperatures cause low flame speeds and are susceptible to flame instability
- Hydrogen enrichment substantially improves the flame speed and extinction characteristics

Pressure & Fuel Influence - Different Models

Flame Angle (dimensionless): Computed vs. Measured



 s_T/s_L - Exp

s_T/s_L - Exp

 s_T/s_L - Exp

Algebraic Flame Surface Wrinkling Model

time scale

by Muppala and Dinkelacker

Premixed

flow

Projected flame

surface area

ECM 2003

premixed flames are universally and

unambiguosly controlled by: the length scale,

mean dissipation rate, viscosity and chemical

Prog. CFD 4, 328, 2004

Novel Submodel for Turbulent Flame Speed

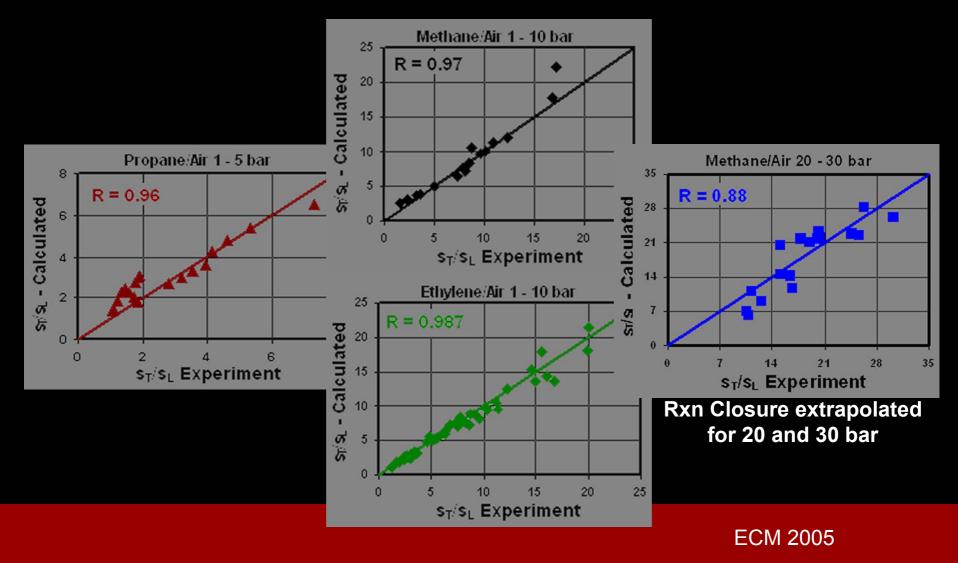
$$S_{T} = S_{L0} \left(1 + \frac{A}{\exp(Le - 1)} \operatorname{Re}_{t}^{0.25} \left(\frac{u'}{S_{L0}} \right)^{0.3} \left(\frac{p}{p_{0}} \right)^{0.2} \right)$$

in time scales

$$S_{T} = S_{L0} + \frac{A}{\exp(Le - 1)} \left(u^{10.8} S_{L0}^{0.2}\right) \left(Da\right)^{1/4} \left(\frac{p}{p_{0}}\right)^{0.2}$$

$$\int_{C} Damköhler number Da = \frac{\tau_{t}}{\tau_{c}} = \frac{l_{x}/u'}{\delta_{L0}/\varsigma}$$

by Muppala, Dinkelacker, and Aluri


Comb. Fl. 140 p 257 2005 Comb. Fl. 145 p 663 2006

Novel Submodel - in older form

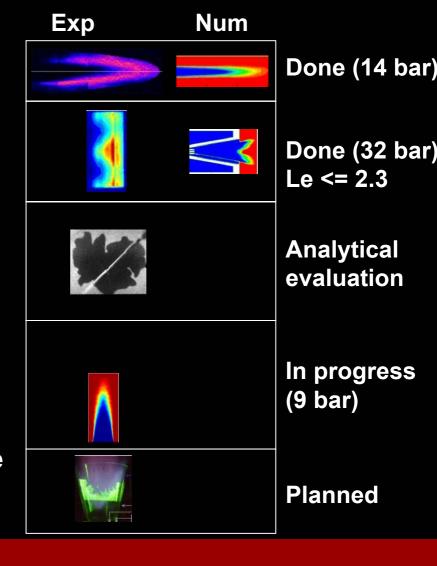
$$S_{T} = S_{L0} \left(1 + \frac{A}{Le} \operatorname{Re}_{t}^{0.25} \left(\frac{u'}{S_{L0}} \right)^{0.3} \left(\frac{p}{p_{0}} \right)^{0.2} \right)$$

Turbulent flame speed proportional to 1/Le is similar to one of the Bradley's ST relations (shown by Driscoll in yesterday's presentation), but has been independently obtained

Correlation plots – All hundred+ data

Five different flames

Hydrocarbons (HC)


- 1. High-jet enveloped flame
- 2. GT burner-combustor flame

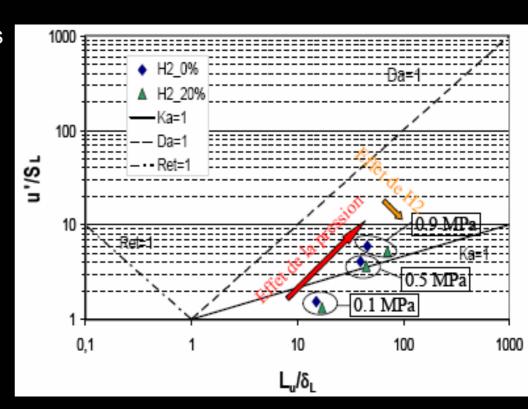
Hydrogen and Hydrocarbons

3. Expanding spherical flame

HC & Hydrogen-doped HC flames

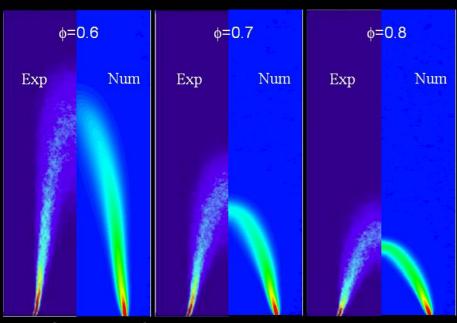
- 4. Bunsen-like flame
- 5. Novel Wide-angled Diffuser flame

- Griebel et al., (Switzerland)
 ALSTOM (Switzerland)
- 3. Kido et al., (Japan)
 4. Gökalp et al. (France)


H₂-doped Premixed Turbulent Flames - Halter et al.

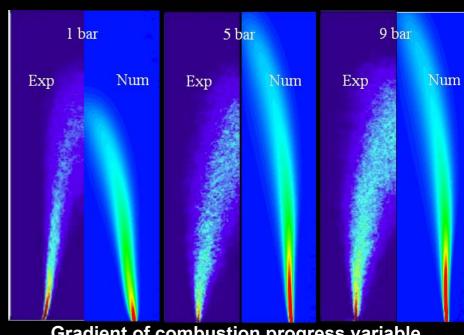
Nine lean (ϕ =0.6) CH₄ Bunsen flames

Pressure 1, 5, 9 bar; $u'/S_{L0} \le 5.5$


 H_2 -doped levels – 0, 10, 20 vol % (with global ϕ constant)

Burner radius, 12.5 mm

HC Premixed Turbulent Flames - Halter et al.

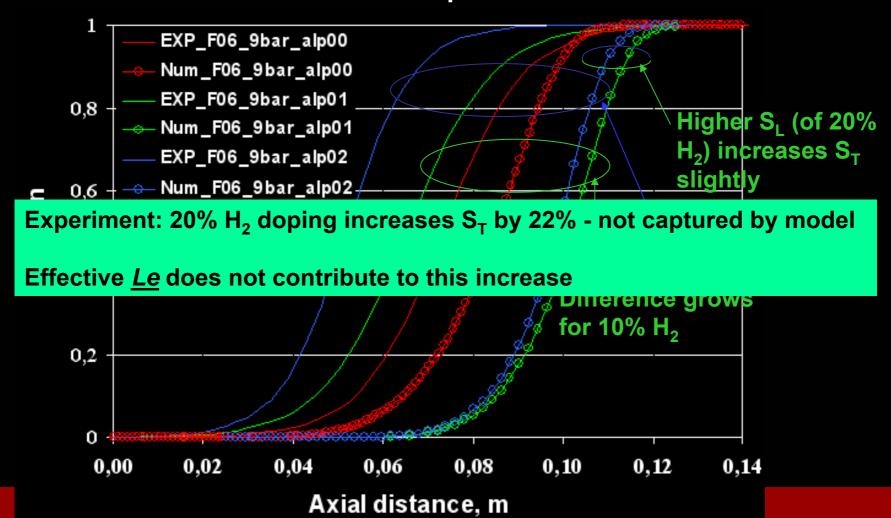

Recent Numerical Simulations vs. Experimental data

Gradient of combustion progress variable

Variation of equivalence ratio →

Pure methane-air mixtures at 1 bar

Gradient of combustion progress variable


Variation of Pressure →

Pure methane-air mixtures for ϕ =0.6

Comb. Fl. (in preparation)

HC & H₂-doped Premixed Turbulent Flames - Halter et al.

Recent Numerical Simulations vs. Experimental data

HC & H2-doped Premixed Turbulent Flames Lawn & Schefer

diffuser flame

Studied flames - 15 (6 pure CH₄ mixtures)

Mixed ($CH_4:H_2 - 3:1$)

$$1 \le u'/S_{1,0} \le 6$$

U = 2.0 & 3.0 m/s

Measured

Turbulent Displacement Speed

compared with

Model's

Turbulent Flame speed

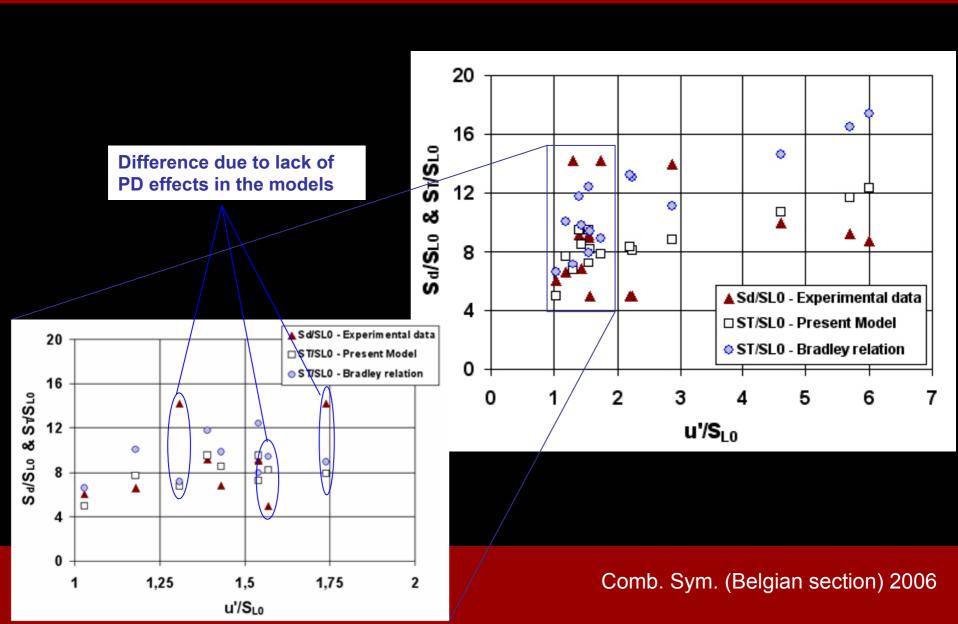
Bradley's relation

$$S_T = 0.88 \cdot u' \cdot (KaLe)^{-0.3}$$

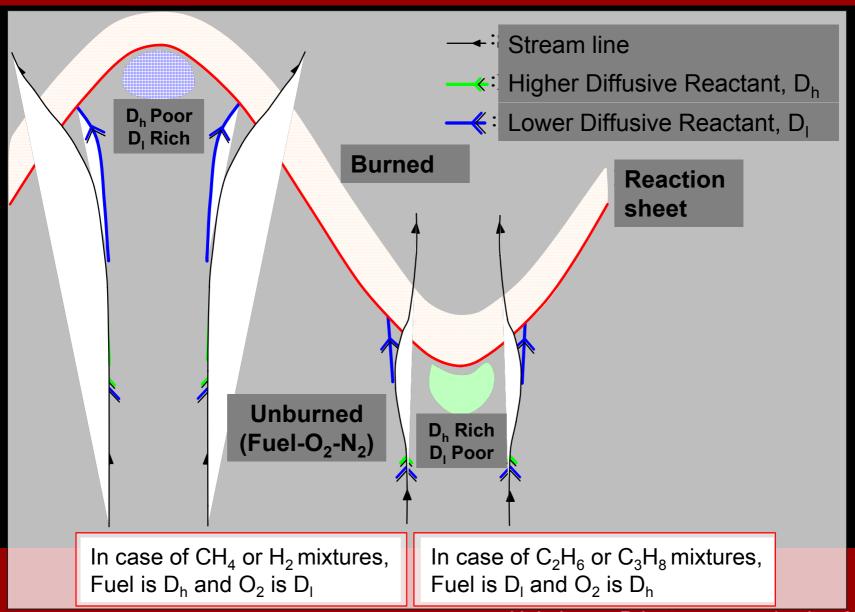
with

$$Ka = 0.157 \left(\frac{u'}{S_{10}}\right)^2 Re_t^{-0.5}$$

Present relation


$$S_T = S_L \left(1 + \frac{A}{\exp(Le - 1)} \operatorname{Re}_t^{0.25} \left(\frac{u'}{S_L} \right)^{0.3} \right)$$

For this data


$$S_L/S_{L0} = (1 - KaMa) \sim 1.0$$

Ma from Halter et al. Comb. Sym. 05

HC & H2-doped Premixed Turbulent Flames Lawn & Schefer

Preferential Diffusion Effect

Nakahara: Private communication 2006

A submodel for Chemical Time Scale

- Both Le and PD effects can be incorporated into the S_T closure based on the concept of leading points propagation of premixed turbulent flame is controlled by the leading flamelets advancing farthest into the unburned gas
- + In other words, "out of several local reacting structures, those with the highest instantaneous speed rush along other structures and control the turbulent flame speed, which is a strong function of physicochemical characteristics of such leading flamelets via the (critical) chemical time scale τ_{cr} " Lipatnikov and Chomiak

Lipatnikov and Chomiak: CST 1998

A submodel for Chemical Time Scale

Step 1

$$S_{T} = S_{L0} + \frac{A}{\exp(Le - 1)} \left(u^{0.8} S_{L0}^{0.2}\right) \left(\frac{\tau_{t}}{\tau_{c0}}\right)^{1/4} \left(\frac{p}{p_{0}}\right)^{0.2}$$

$$\tau_{cr} = \tau_{c0} \left(\lim_{t \to \infty} u_{c}\right) / \max\left\{u_{c}(t)\right\}_{r_{t} = r_{cr}}$$

Critical chemical time scale is deemed to include both PD and Le effects

Step 2

$$A_{_{\! 0}}\cdot S_{_{L0}}^{_{\, 0.2}}\left/ au_{_{c0}}^{^{1/4}}=A_{_{\! 1}}\cdot S_{_{L1}}^{_{\, 0.2}}\left/ au_{_{cr}}^{^{1/4}}
ight.$$

- # A₀ (given), A₁ (unknown) are model constants
- # A₁ estimated from reaction submodel
- Steps 1 & 2 are analysed for hydrogen influence

Critical chemical time scale = chemical time scale x consumption rate (of undisturbed planar laminar flame)/maximum possible local consumption rate

Lipatnikov and Chomiak : Combust. Sym. 1996, CST 1998, PECS 2005

ASME Int. Mech. Congress & Expo 2006

Lipatnikov: Private communication 2006

Acknowledgements

Sincere thanks to:

Prof. Dr. Andrei Lipatnikov, Chalmers University of Technology, Sweden Prof. Dr. Hideaki Kobayashi, Tohoku University, Japan

Financial Support (postdoctoral fellowship - Siva Muppala) by: Tractebal Company, Belgium

Thank you